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Abstract— Implementing flexible, software-defined duplexing
transceivers remains challenging due to the inherent self-
interference from TX to RX that requires cancellation in the
RF/analog domain. Previously, we presented a novel, duplexing,
integrated, single antenna transceiver architecture that used
an M-stage distributed amplifier combined with an artificial
transmission line to achieve high transmit-receive isolation across
more than an octave in center frequency. In this paper, we explain
and explore the trade-offs and limits on this class of distributed,
duplexing transceivers as a function of system and sub-circuit
parameters.

Index Terms— Distributed amplifier, FDD, full-duplex, passive
mixer, software-defined, transmission line, transceiver, tunable,
TX-RX isolation, wide-band.

I. INTRODUCTION

AS WIRELESS data demands increase, flexible wireless
systems are a virtual necessity. Making use of whitespace

spectrum (e.g. unused satellite and TV bands) requires the
utilization of transceivers that can support a multitude of
bands. Furthermore, existing spectrum can be used more
efficiently with hardware that supports frequency division
duplexing (FDD) as is required for most cellular standards,
including W-CDMA (3G) and 4G LTE. These solutions have
inherent challenges, and current state of the art multi-band,
software-defined FDD systems use multiple antennas and/or
multiple off chip duplexers, which dramatically increase the
system’s cost and size while limiting its flexibility [1]–[10].

Integrated, narrowband duplexers that achieve both high
isolation and high TX output power with a single antenna
port have been previously demonstrated [11]–[15], however
maintaining high isolation and output power over multiple
octaves of tuning range within these constraints has proven
to be difficult. These challenges are exacerbated by the
need for high TX power efficiency and low receiver noise
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Fig. 1. Block diagram of the system from [16].

figure. [16] has demonstrated a combination of techniques
that can provide suppression of both TX RF signals and
TX noise at the receiver. This system uses a distributed
structure to isolate TX and RX and requires only a single
antenna port while being tunable across multiple octaves.

In this paper, we provide a full theoretical analysis of
the distributed duplexing systems presented in [16] and [17].
We analyze: 1. The fundamental behavior of a distributed
duplexing transceiver. 2. Methods for selecting the complex
weights to null the transmitter signal at the receiver while
optimizing TX efficiency. 3. The trade-off space of weight
precision, number of stages, tuning range, and various circuit
parameters. 4. The effects of TX output noise on RX NF.

II. THE DISTRIBUTED TRANSMITTER

The duplexing transceiver shown in Figure 1 (from [16])
can be thought of as an extension of a distributed ampli-
fier [18]. In a distributed amplifier such as the one in Figure 2,
the outputs of M sub-transmitters are combined by a passive
network—often a transmission line or similar LC structure.
The inputs are phase shifted relative to each other such that
the TX signal Vin adds constructively at the antenna port. In a
traditional distributed amplifier, these input phase shifts are
provided by a second transmission line, but the fundamental
operation of the amplifier is the same however the appropriate
phase shifts are generated. More generally, these input phase
shifts can be treated as complex input weights with both a
gain and phase term.

A distributed amplifier used as in Figure 2 will provide
some TX/RX rejection (PR X/PANT ) at the RX port, but high
rejection only appears at a few frequencies, and between
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Fig. 2. A typical distributed amplifier being used as a duplexer. A distributed
transmitter is simply this system with full software control of each wT X,i .

Fig. 3. The rejection achieved by a typical distributed amplifier across
frequency and number of taps (M) for an ideal, lossless transmission line
with τd = 200ps per stage [19]. By our definition, rejection = 1/(isolation) =
PRX /PAN T .

these frequencies degrades to around 10-15dB as shown
in Figure 3. This is insufficient for FDD operation [13].
However, by manipulating the input weights wT X,i , greater
TX/RX rejection can be achieved over a wide tuning range
with a minimal impact on TX output power.

A. Combiner Modeling and Weight Calculation

The passive network that combines the TX signals can be
described as an impedance matrix (Z), derived from enforcing
Kirchoff’s Current Law (KCL) at each sub-transmitter output
in Figure 2. Z has as many rows and columns as there are
current-mode transmitter taps. If the voltage on individual taps
are not of interest, then this can be compacted into a 2xM
matrix (ZTL), with M columns for the M inputs, and two rows
corresponding to the receiver and antenna node voltages.

ZTL =
[

∂vR X/∂i1 ∂vR X/∂i2 . . . ∂vR X/∂iM

∂vANT /∂i1 ∂vANT /∂i2 . . . ∂vANT /∂iM

]
(1)

where in is the current flowing into the nth transmission line
tap.

Optimizing isolation (PANT /PR X ) requires choosing the
weights associated with individual transmitters given this
impedance matrix. The first row of the impedance matrix
(
−−→
Z R X ) describes how injected currents combine at the receive

port, and the second row (
−−−→
Z ANT ) describes how they combine

at the antenna port. Treating the transconductances of sub-
PAs as a diagonal MxM matrix Gm, and the tap weights as
an M-entry column vector, −−→wT X :[

VR X

VANT

]
= ZTLGm

−−→wT X Vin =
[ −−→

Z R X−−−→
Z ANT

]
Gm

−−→wT X Vin (2)

Choosing a weight vector −−→wT X properly achieves suppres-
sion at the RX port and summation at the TX port. A simple

mathematical solution is to set VANT = 1 and VR X = 0
and to solve for −−→wT X using the Moore-Penrose pseudo-inverse
of ZTL:

−−→wT X = (ZTLGm)∗[ZTLGm(ZTLGm)∗]−1
[

VR X

VANT

]
(3)

Equation 3 by itself provides little intuition. However, it is
easy to see that we want to choose −−→wT X such that it is
orthogonal to

−−→
Z R X , so that their product (the voltage at the

RX port) is zero. At the same time, −−→wT X should be reasonably
well aligned with the classic distributed amplifier weights
(
−−−→
Z∗

ANT ) to ensure TX signal combines mostly in-phase at
the antenna port. A reasonable choice of −−→wT X is to make it
parallel to

−−−→
Z∗

ANT , and then subtract the projection of this vector

onto
−−→
Z∗

R X , such that:

−−→wT X ∝ −−−→
Z∗

ANT − −−→
Z∗

R X

(−−→
Z R X · −−−→

Z∗
ANT−−→

Z R X · −−→
Z∗

R X

)
(4)

scaled by the overall desired gain.
This is simply the Gram-Schmidt process for finding a set of

orthonormal basis vectors and is equivalent to using a pseudo-
inverse (equation 3). All of these equivalent methods find
the solution to −−→wT X that achieves the desired VANT while
minimizing ||−−→wT X ||2. True optimization for system power
efficiency is not necessarily achieved by minimizing ||−−→wT X ||2,
but this minimization provides a reasonable solution. System
power efficiency is considered in more detail in Section II-E.

B. Distributed Amplifier Isolation Across Frequency

For a transmission line combiner, two important choices are
the number of current-injection taps, and the propagation delay
between each tap. Some insight into these decisions can be
found by looking at a classic distributed amplifier. Assuming
an ideal, lossless transmission line whose segments have a
time delay τd , and characteristic impedance Z0 (and assuming
matching at the RX and antenna port), we can find ZTL:

ZTL =
(

Z0

2

)[
1 e(− jωτd ) . . . e(− j (M−1)ωτd)

e(− j (M−1)ωτd) . . . e(− jωτd ) 1

]
(5)

and choose −−→wT X so that VANT is maximized:

−−→wT X =

⎡
⎢⎢⎢⎣

e( j (M−1)ωτd)

...

e( jωτd )

1

⎤
⎥⎥⎥⎦ (6)

The resulting rejection at the RX port is plotted
in Figure 3. In this case, we see that the lowest frequency
where perfect isolation occurs is ωmin = π/(Mτd ). Similarly
perfect isolation occurs at integer multiples of ωmin up to
ω = π

τd
, at which point each transmission line segment

gives a 180◦ phase shift and isolation degrades entirely. More
generally, if ωτd corresponds to a phase shift of kπ where
k ∈ Z, isolation will degrade to 0dB, as can be seen in Figure 3
at DC (k = 0) and 2.5GHz (k = 1). Empirically, it can also be
observed that isolation degrades between optimal frequencies
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Fig. 4. Normalized PAN T across frequency if the TX weights are set by
equation 3 and scaled for a constant L-2 norm. Plotted for an ideal, lossless
transmission line and τd = 200ps.

(to ∼10dB for M = 3). The band between the highest
and lowest frequency of perfect isolation for M ≥ 2 is
fmax/ fmin = M − 1. If the minimum level of ∼10dB of
isolation is allowed, the frequency range extends roughly to
fmax/ fmin ≈ M for M ≥ 3.

C. Frequency Range and Combining Efficiency

The basic analysis above indicates how much “natural”
isolation one can expect from the distributed structure on
its own. One can achieve perfect isolation by adjusting the
transmit weights, provided ωτd is not a multiple of 180◦.
However, changing the transmit weights away from the ideal
values for coherent summation at the antenna port will be
inherently less efficient. We define the efficiency with which
each sub-transmitter’s output currents are combined at the
antenna port as the “combining efficiency” ηcomb:

ηcomb = IANT

IANT ,ideal
= IANT∑M

i=1 IT X,i
(7)

where IT X,i is the ith sub-transmitter’s output current signal,
and IANT is the total output current at the antenna port.

To analyze this limited combining efficiency, we can calcu-
late TX weights for perfect rejection using equations 3 and 5
at each frequency. We know that these weights give zero TX
power at the RX input, but plotting the resulting TX output
power at the antenna port (PANT ) shows variation across
frequency (Figure 4). For each frequency where the distributed
amplifier provides perfect rejection (Figure 3), ηcomb = 1 and
output power reaches a maximum. At all other frequencies,
some of the otherwise available TX output power is sacrificed
to ensure perfect TX rejection at the RX port. If we define a
function Rejint(ω) that gives the intrinsic rejection expected
from a distributed amplifier (Figure 3), and the maximum
possible output power assuming perfect TX summation (Pmax )
we can calculate the expected drop in TX output power:

PANT = Pmax
(
1 − Rejint(ω)

)
(8)

Therefore, the combining efficiency of distributed duplexing
is related to the intrinsic rejection, and is maintained over
a similar bandwidth. Furthermore, combining efficiency is
improved within this band as the number of stages increases.
ηcomb > 90% can be achieved over more than an octave for
any case where M ≥ 3. Low combining efficiency will lower

Fig. 5. Bandwidth over which isolation ≥40dB for τd = 200ps and vary-
ing M and α. Depending on fT X , rejection bandwidth ranges from 20MHz
to 300MHz.

the overall system power efficiency, but is only one factor
affecting the overall efficiency (see Section II-E).

D. Isolation Bandwidth for Fixed TX Weights

In the previous two sections, we have discussed how the
combining network sets the bandwidth over which a distrib-
uted duplexer is tunable. For each desired transmit frequency
( fT X ) within this bandwidth, there exist choices for −−→wT X that
provide high isolation without a large cost to output power.
However, given a fixed choice of −−→wT X , high TX/RX isolation
is achieved in a narrower bandwidth around fT X . This limited
bandwidth occurs because the phase shift imparted by each
transmission line segment varies as frequency varies, so iso-
lation degrades as frequency varies around fT X .

We define isolation bandwidth (or equivalently, rejection
bandwidth) as how TX-RX isolation deteriorates around
fT X given a fixed −−→wT X , M, and τd . Figure 5a shows this
for varying M. We also introduce a term α, which models
the loss from each transmission line segment. Including α,
the expression for ZTL becomes:

ZTL =
(

Z0

2

)

×
[

1 αe− jφ . . . αM−1e− j (M−1)φ

αM−1e− j (M−1)φ . . . αe− jφ 1

]
(9)

Using this definition of ZTL, Appendix shows how the rejec-
tion around fT X can be derived using the pseudo-inverse
method, and the result is shown in equation 10.

To see how much isolation bandwidth can be expected
across different values of fT X , we choose a threshold for
sufficient isolation of 40dB. In Figure 5 we plot the bandwidth
around fT X for which the isolation will be higher than the
40dB threshold for different values of M and α. In general,
there are two typical situations for isolation bandwidth. Rep-
resentative plots of these two cases are plotted in Figure 6.
In general, a single rejection notch exists and high isolation
is achieved over a small bandwidth (for a threshold of 40dB
isolation, only about 1/(200τd)). However, for some choices
of fT X , two rejection notches happen to appear near each
other, and the isolation bandwidth is increased greatly over the
nominal case for the same isolation threshold. For M stages,
Figure 5 shows there are M-2 regions between “natural”
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Fig. 6. Two representative cases for rejection bandwidth are shown.
One rejection notch is guaranteed at fT X . In some cases, a secondary
rejection notch exists near the one at fT X (as shown in the right plot where
fT X = 2GHz), increasing the bandwidth for which good rejection is achieved.
Both plots are shown for α = 1, M = 7, and τd = 200ps, and show both
simulation data and the analytic expression in equation 10.

Fig. 7. Rejection at 2GHz for M = 7 and τd = 200ps including loss in the
transmission line. Even for low loss, the secondary rejection notch begins to
disappear, eventually limiting rejection bandwidth in the 2-notch scenario.

isolation peaks where high isolation bandwidth is achievable,
though as M increases, the bandwidth within these regions
decreases. Additionally, as the transmission line loss increases,
any secondary notches disappear, causing the high-isolation
bands to shrink (Figures 5 and 7).

Regardless of the properties of the high-isolation bandwidth
regions, there is a minimum isolation bandwidth guaranteed
across frequency. This bound is given in equation 11, and can
be derived from equation 10 by setting M = 2, α = 1, and
assuming 	φ is small:

IsoBW( fT X ) ≥ 2 · 10(Rejmin/20) sin (2π fT Xτd )

πτd
(11)

where Rejmin is the minimum acceptable rejection in dB.

E. Optimizing Efficiency of Weights

In the simple projection approach to finding optimal trans-
mitter weights from Section II-A, the resulting weights are not
only orthogonal to

−−→
Z R X , guaranteeing that TX signal will be

nulled at the RX port, but also provides the desired TX signal
while minimizing L-2 norm of the weights. This minimization
is a reasonable proxy for maximizing efficiency, as the sub-
transmitter PAs will dominate power consumption, and will
consume power proportional to the TX weights. However,
optimizing system efficiency is better done by considering the
L-1 norm of the weights, since the total PA bias current is
proportional to ||−−→wT X ||1. To perform proper optimization of
system power efficiency (PANT /PDC ), we must first find PDC .

One bound on power consumption (PDC ) is set by both the
current signal in each PA, and the voltage signal on its output.
Thus the expected power consumption will be the sum of the
product of each PAs current and voltage, summed across PAs:

PDC ∝
M∑

k=1

|vk ||ik| (12)

In this case, if bias current and voltage for each PA is made
equal to peak signal current and voltage, each PA will be
operated in the ideal Class A mode, so the expected maximum
efficiency is 50%. Note that these PAs can be operated in a
less linear, more efficient mode, but overall trends we will
observe would still hold. Optimizing TX weight selection
to minimize ||−−→wT X ||1 was done using a stochastic approxi-
mation algorithm with a local gradient descent. Simulation
in MATLAB using this optimization algorithm (Figure 8)
shows that using this definition of efficiency indeed provides a
moderate improvement over the projection method above, with
qualitatively similar behavior across frequency and number
of amplifier stages. Interestingly, the optimal weight vector
tends to be sparse (i.e. some weights are zero). In contrast,
simple projection is entirely non-sparse (every weight has
significant magnitude) except where ηcomb � 1. This sparsity
has important implications for system efficiency since zero-
weights imply that entire sub-transmitters could be shut down
without degrading performance, thus saving significant overall
power outside the PAs. For the scenario in Figure 8, the median
number of active PAs when ηcomb ≥ 90% is 5, so typically one
of the 6 PAs in that scenario could be off for most frequencies
of operation.

III. TRANSMISSION LINE OPTIMIZATION

All delay elements considered thus far have assumed a pure
time delay implemented with a transmission line structure.
However, in reality the physical implementation of these
delays will impact the system performance and may not
achieve an constant time delay. As discussed in section II-B,
τd ≥ π/(Mωmin ) if ωmin is the minimum desired transmit
frequency. This corresponds to a required total phase shift
((M − 1)ωτd ) of 90◦ to 180◦. In the low GHz design space,

Rej( fT X + 	 f ) = 20 log10

⎛
⎝αM+1

∣∣∣∣∣∣
Kα(α2M − 1)e jφ −

(
sin (Mφ)

sin (φ)

)
Lα(α2 − 1)e j Mφ

Lαα2(α2M − 1)e j Mφ −
(

sin (Mφ)
sin (φ)

)
α2M (α2 − 1)Kαe jφ

∣∣∣∣∣∣
⎞
⎠, φ = 2π fT Xτd ,

Kα =
(

e j	φ − α2
) (

e j M(2φ+	φ) − 1
)

, Lα =
(

e j M	φ − α2M
) (

e j (2φ+	φ) − 1
)

, 	φ = 2π(	 f )τd (10)
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Fig. 8. Comparison of power efficiency for the typical pseudo-inverse weight
calculation and for optimized PA bias based on equation 12. The system is
unable to achieve the ideal 50% efficiency due to transmission line loss and
ηcomb < 1. This plot is given for M = 6, n = 3, L = 3.333nH, Q = 20,
Rsh = 1k
 and uses the lossy LC transmission line model from Section III-C.
A histogram of the weight sparsity for the optimized case is also plotted,
showing at least one PA is off in most cases after efficiency optimization for
the frequencies where ηcomb ≥ 90%.

a transmission line capable of providing ≥ 90◦ of delay would
need to be several millimeters long and would be impractical
for integrated systems. In order to achieve the delay required in
an integrated form-factor an artificial transmission line can be
used. The rest of this section will be dedicated to the analysis
of such an artificial line on system performance.

A. Frequency Range

In addition to the previously discussed frequency limits
imposed by combining efficiency, an artificial transmission
line has a cutoff frequency (i.e. the Bragg frequency). Above
this frequency, the artificial transmission line cuts off like a
low-pass filter. The filter’s stopband begins around fBragg ≈
1/(π

√
LC), so high insertion loss and poor S11 can be

expected near and above this frequency, making it important to
design an artificial transmission line with its Bragg frequency
well above the upper combining efficiency limit.

If the Bragg frequency is too low for a given M and τd , it can
be increased by using n artifical transmission line segments
per sub-transmitter, each with delay τunit = τd/n (Figure 9).
Assuming this structure we find the Bragg frequency as a
function of n and τd :

fmax,T L ≡ ξ fBragg ≈ ξ

π
√

LC
≈ ξ

πτunit
= nξ

πτd
(13)

where ξ ∈ [0, 1] is chosen by the designer to decide how close
to the Bragg limit is acceptable.

To decide the value n should take given M and τd , we must
look at the maximum frequency limit due to the drop in
combining efficiency as φ → 180◦. This limit ( fmax,η)
can be considered to be roughly the highest frequency at

Fig. 9. Configuration of the artificial transmission line for general n and
M. Each LC segment is represented by a passive 2-port network. Where sub-
transmitter PAs connect to the transmission line, the PAs output resistance
(Rsh ) is modeled.

Fig. 10. Simulated insertion loss across frequency for Z0 = Z RX =
Z AN T = 50
, τd = 200ps, n = 2, and M = 4 across PA output resistance
(Rsh ) and inductor Q. Low Rsh and low inductor Q increase insertion loss
below fBragg ≈ 3.2GHz.

which perfect isolation is achievable in a standard distributed
amplifier. From Section II-B that means:

fmax,η ≡ 1

2τd
− 1

2τd M
= M − 1

2τd M
(14)

for M ≥ 2. To find n, we set fmax,T L = fmax,η:

n = π(M − 1)

2ξ M
(15)

Here we can see that if n = 1, the Bragg limit will limit
the maximum frequency for M ≥ 3 even if ξ = 1, and so
typically n ≥ 2 should be used.

B. Insertion Loss

Ideally, the transmission line structure would be lossless.
In practice, the dominant sources of loss are the resistive
losses associated with the inductors and the finite output
resistance of the sub-transmitter PAs. The expected insertion
loss can be found by treating each transmission line segment as
a 2-port network and finding the S21 of N cascaded segments.
As shown in Figure 9, we find N = n(M − 1) + 1. One
complicating factor is that if n �= 1, some transmission
line segments will include shunting loss due to PA output
resistance, while others will not (Figure 9). Figure 10 shows
the effect of inductor Q and PA output impedance (Rsh) for a
specific choice of n, M, and τd .

It is worth noting that when lengthening the line with
constant n and M, loss will increase, however this is typically
not how more stages would be added to a design. As discussed
in Section II-B, the total required line delay is set by the lowest
desired frequency of operation. If the line is of constant length
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Fig. 11. Equivalent circuit of an artificial transmission line for n = 2 with
node numbers labeled.

and we consider loss from the series inductors, splitting the
line into more and more segments (increasing n and/or M),
doesn’t change the total series inductance. Therefore, given a
constant inductor Q, the line loss due to the inductors doesn’t
depend on n and M, but rather the minimum frequency of
operation set by the total delay Mτd .

Of course, as more sub-transmitters are added, more copies
of the PA output impedance Rsh appear in parallel, which
would also seem to increase loss as M increases. This is
true, however if a constant maximum output power is desired,
increasing M requires more sub-transmitters with lower indi-
vidual output power requirements. For lower power sub-
transmitters, Rsh can be improved proportionally and insertion
loss is once again roughly constant over changing M, assuming
a constant maximum output power at the antenna (PANT ). The
requirements imposed on the sub-transmitters by distributed
duplexing and the relationship between output current and Rsh

are explained in Section IV.
Considering a system with a specific requirement for PANT

and for the minimum frequency of operation, we can say
that insertion loss is independent of n and M to first order.
This suggests that large n and M are desirable, however
Section IV will discuss how sub-transmitter constraints limit
the maximum practical n and M.

C. Modeling the Artificial Transmission Line

The expression for ZTL in equation 9 will be approximately
accurate for an artificial transmission line, however it only
models the line well if the frequency of interest is well below
fmax,T L , and only if a narrow bandwidth is considered due
to the fact that τd and α vary with frequency for an artificial
transmission line. Considering that one of the strengths of a
distributed transmitter is the wide bandwidth over which it is
tunable, a model that is only accurate for a narrow bandwidth
is not ideal. Therefore, we can derive a more accurate ZTL
for artificial transmission lines using the circuit in Figure 9.

To efficiently derive ZTL, we start by noticing that many of
the circuit nodes in Figure 9 are simply points where two of
the series L/2 inductors meet. If these two series L/2 inductors
are combined into a single inductor of value L, we arrive
at an equivalent circuit of the form shown in Figure 11.
If N corresponds to the number of T-networks used as before,
the resulting circuit has N+2 nodes, where the extra 2 nodes
are the RX and antenna ports.

To fully model the circuit in Figure 11, we first consider an
impedance matrix Z of dimension N+2 by N+2 derived from
enforcing KCL at each node. Deriving Z directly is potentially
very tedious, so we will instead find the admittance matrix Y,
where Y = Z−1. To find the entries of Y, we use the definition
of the admittance parameter (y-parameter) for a general N-port

network:

yi, j = Ii

V j

∣∣∣
Vk �=i =0

(16)

Performing this analysis on each node and noting that only
adjacent nodes have non-zero admittance parameters, we can
see that the Y-matrix is a square, banded matrix of the form:

Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

y11 y12 0y21 y22 y23

y32 y33
. . .

0
. . .

. . . yN+1,N+2
yN+2,N+1 yN+2,N+2

⎤
⎥⎥⎥⎥⎥⎥⎦

(17)

where each entry is given by the following formulae after
applying the definition of yi, j :

yi,i =
⎧⎨
⎩2Ys + jωC + 1

Rsh
nodes with PAs

2Ys + jωC nodes without PAs

yi±1,i = yi,i±1 = −Ys i ∈ [3, N]
Ys ≡ 1

ωL( j + 1/Q)
(18)

For i = 1, 2, N + 1, N + 2, the pattern in equation 18 doesn’t
hold. Applying the y-parameter definition once more for these
remaining nodes gives:

yN+2,N+2 = 2Ys + 1

Z ANT
y1,1 = 2Ys + 1

Z R X

yN+1,N+1 = y2,2 = jωC + 3Ys + 1

Rsh
yN+1,N+2 = yN+2,N+1 = y1,2 = y2,1 = −2Ys (19)

At this point, every non-zero value of Y has been defined,
so we can find Z by inverting Y.

This gives us the N+2 by N+2 impedance matrix (Z) that
fully describes the circuit in Figure 11. ZTL can be found
simply by taking the relevant terms from Z—specifically keep
only the first and last rows of Z, and only keep columns with
PAs connected. For the circuit in Figure 11, this means:

ZTL =
[

Z1,2 Z1,4 . . . Z1,N+1
Z N+2,2 Z N+2,4 . . . Z N+2,N+1

]
(20)

Using this ZTL in place of the ideal transmission line
definition of ZTL from equation 9 is more computationally
intensive, but will be accurate across frequency. One example
of this is given in Figure 12, where isolation bandwidth is
plotted across a wide bandwidth using both models. This plot
shows how isolation bandwidth suffers due to the increasing
loss at higher frequencies for an artificial line.

IV. SUB-TRANSMITTER CONSTRAINTS

As careful design of the transmission line is required to
maintain the desired system-level performance, so too is the
design of each sub-transmitter important. Here we will look
at how system-level decisions constrain sub-transmitter design
in distributed duplexers.
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Fig. 12. Isolation bandwidth plotted using the ideal transmission line model
and the LC model for an artificial line given in Section III-C. At higher
frequencies, the fixed α of 0.999 chosen for the ideal model no longer models
the line well. One can also see that the effective τd is not constant across
frequency, causing the high-isolation lobes to move as frequency increases.
Plotted for M = 6, n = 2, τd = 200ps, Q = 10, and Rsh = 1k
.

A. PA Restrictions

Due to both the wideband nature of distributed duplexing
and the connection of each PA directly to a transmission line,
certain restrictions are placed on the design of each PA. The
design presented in [16] used a cascoded, Class AB, common-
source amplifier, but any topology that satisfies the following
requirements will work.

1) The PA must be wideband or widely tunable to span
the full frequency range set by M and τd—potentially several
octaves.

2) In order to achieve the desired maximum output
power (PANT ), each PA must support some maximum output
current (Imax ):

Imax >
2

ηcomb M

√
2PANT

Z ANT
(21)

where ηcomb is the expected combining efficiency and we
assume Z0 = Z ANT = Z R X . Imax must be larger than the
value given in equation 21 because each PA’s output will be
attenuated somewhat by the transmission line’s loss. If for
simplicity we assume the fraction of insertion loss affecting
each PA is proportional to the fractional line length seen
by that PA, we can add a correction factor based on the
transmission line’s total power gain AT L :

Imax ≈ 2

ηcomb

⎛
⎝ A

1
M−1
T L − 1

A
M

M−1
T L − 1

⎞
⎠

√
2PANT

Z ANT
(22)

where equation 22 is equivalent to equation 21 in the limit
as AT L → 1.

3) The output capacitance of the PA (Cout ) must not inter-
fere with the operation of the transmission line. This means
Cout must be small enough to be absorbed into the transmis-
sion line. To maintain some transmission line impedance Z0,
the requirement for Cout is:

Cout ≤ L

Z2
0

≈ τunit

Z0
= τd

nZ0
(23)

Cout does not depend on M to first order because the width of
PA devices can be scaled down proportionally to maintain a
constant PANT as M increases. Previous sections have shown
n should be large, however this constraint on Cout gives

Fig. 13. Output voltage swing for each sub-transmitter for M = 8,
τd = 200ps, and an ideal transmission line. Voltage swing decreases
monotonically for all frequencies, but individual PA requirements vary across
frequency. PA0 is on the RX port and is not plotted as VRX = 0.

the upper limit on n: n ≤ τd/(Cmin Z0), where Cmin is the
minimum achievable Cout for a given Imax .

4) The output resistance (Rsh) of the PA must be large
to avoid high insertion loss in the transmission line. The
effect of finite PA output resistance is modeled in Section III,
where it was asserted that Rsh increases as M increases for
a constant PANT . This is equivalent to saying that Rsh ∝
1/(Imax), which is true to first order because the small-signal
output resistance of a FET is inversely proportional to its drain
current. Therefore, insertion loss to first order does not depend
on M for a fixed PANT , and so large M is desirable. Large
enough M becomes impractical, due either to the breakdown
of the approximate proportionalities used in the preceding
discussion, or other elements of the sub-transmitter that do
not scale well with M, such as the resolution (and therefore
complexity) of TX weight generation (Section IV-C) and the
large baseband filtering capacitors.

5) PA’s must support a maximum voltage swing at their
outputs (Vmax ). For the PA closest to the antenna, the voltage
swing required is Vmax = √

PANT Z ANT . However, given
a large amount of isolation, the voltage swing close to the
receiver will be near zero. Therefore one cannot simply
linearly interpolate between Vmax and 0 to find each PA’s
maximum voltage requirements, as generally the voltage will
not decrease from antenna to receiver in equal steps. However,
one can expect the maximum voltage swing to monotoni-
cally decrease moving from antenna to receiver as shown
in Figure 13.

B. PA Linearity Considerations

In addition to the constraints enumerated in Section IV-A,
the non-linearity of each PA will contribute harmonic terms
both at the RX and antenna ports. These harmonics must be
limited at the antenna port to meet spectral mask requirements,
and at the RX port to avoid de-sensitizing the receiver. Due
to the natural low-pass characteristic of the artificial transmis-
sion line above the Bragg frequency, high-order harmonics
are filtered out. However, low-order harmonics may not be
attenuated, as they may fall within the range over which the
transmission line was designed to operate. In this section we
will consider the implications of PA non-linearity in distributed
transmitters.
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Fig. 14. The contribution of 2nd harmonic power at the RX port by
PA input and output non-linearities assuming an ideal, lossless transmission
line, M = 4, and τd = 200ps. Power is normalized so that 0dB corre-
sponds to in-phase summation. TX weight amplitudes are scaled to maintain
constant PAN T at each frequency. For input nonlinearity, the TX weights
provide some suppression wherever ηcomb ≈ 1 if the transmission line
maintains a constant delay. Output non-linearity shows variable behavior
across the usable tuning range.

Typically, output harmonic content due to PA non-linearity
can be described by a polynomial function of the PA’s input
signal. In the case of distributed duplexing, the output har-
monics of each PA must be a function of both its input and
output signals, as the output swing of a specific PA may be
large or small due to the action of the other sub-transmitters.
Additionally, the TX weights applied to each PA’s input will
affect the relative phase and magnitude of harmonics as well
as the fundamental tone, which will also affect the total power
of harmonic terms at the RX and antenna ports.

To analyze the effects of these factors, we will first consider
only non-linearity due to input signal swing and limit ourselves
to 2nd order effects for simplicity. Therefore the large-signal
voltage transfer function of a single PA is given by:

Vout = a1Vin + a2V 2
in (24)

Substituting in Vin = AT X cos (ωT X t + φT X ) to model the
weighted TX signal input gives:

Vout = a1Vin + A2
T X a2

2
[1 + cos (2ωT X t + 2φT X )] (25)

Here we see that the 2nd harmonic term has a magnitude
scaled by A2

T X , and double the phase shift of the original
signal. If we assume the transmission line provides a con-
stant delay across frequency, then the phase shift due to
transmission line propagation delay is doubled at the second
harmonic as well. Because both the input signal phase shift
and the phase shift from the line are doubled at the second
harmonic, the resulting second harmonic signal will have the
same desired phase at both the RX and antenna ports as
the fundamental TX signal—implying the second harmonic
(and in general, the nth harmonic) will combine in-phase at
the antenna port and out-of-phase at the RX port.

Unfortunately, this does not mean that harmonics are sup-
pressed to the same extent as the fundamental TX signal.
Because the magnitude of the second harmonic term is
squared, the magnitudes of each PA’s contribution to VR X will
not be correct for cancellation unless the magnitude of each
TX weight is identical. Therefore, only limited cancellation
of harmonics is possible at the RX port when the TX weights
have similar magnitude, as they typically do when ηcomb ≈ 1
(Figure 14).

If, instead of input non-linearity, we consider pure output
nonlinearity in the same fashion, we find there is not signifi-
cant suppression of non-linearity at the RX port (Figure 14).
This is because the output swing monotonically increases
across PAs (Figure 13), so the assumption that signal mag-
nitudes are similar across PAs is almost always false for
harmonic terms generated due to output non-linearity.

The total harmonic power at both the RX and antenna ports
can be approximated by summing the input and output non-
linearity terms. Because input linearity is typically a stronger
effect than output linearity, there may be some modest sup-
pression of harmonics at the RX port, but this effect depends
on the relative strength of input vs output non-linearity in the
specific PAs used. If the harmonic content at the RX or antenna
ports is too strong, [17] presented a technique to suppress 2nd

and 3rd order harmonics at the RX port in distributed duplexers
implemented with 8-phase passive mixers.

C. Effects of Complex Weight Quantization

In a real sub-transmitter, the desired complex weight will
be realized with limited resolution, affecting TX output power
and TX/RX isolation. If we define Nb as the ENOB of control
over the I and Q component of each TX weight, we can
bound the peak achievable isolation as a function of Nb .
To do this, we start by considering the desired nth TX signal,
VT X,n,ideal . Each VT X,n,ideal can be written as a sum of I and
Q components like so: VT X,n,ideal = In + j Qn .

Due to quantization errors in realizing In and Qn , the actual
TX weight will be VT X,n = VT X,n,ideal + 	In + j	Qn. For
Nb bit control on both I and Q, we can find the maximum
possible value for 	In and 	Qn :

	In ≤ ±Amax

2Nb+1 and 	Qn ≤ ± j Amax

2Nb+1 (26)

where Amax is the maximum magnitude of VT X,n,ideal .
By our definitions of VT X,n , we can see that the magnitude

of the total worst-case error for each VT X,n is:

|	In + j	Qn| =
√

	I 2
n + 	Q2

n ≤
√

2Amax

2Nb+1 (27)

Given the worst-case error for a single sub-transmitter,
we then find bounds on the total output signal magnitude
(|VANT |) and TX/RX isolation. Regarding |VANT |, the worst-
case is where all M error terms align 180◦ out of phase with
VANT . In that case, if we define the ideal output signal as
VANT ,ideal :

|VANT | ≥ |VANT ,ideal | − M · |	In + j	Qn| (28)

where |VANT ,ideal | = ηcomb Amax M . Assuming the ideal sub-
transmitter weights give perfect cancellation at the RX, we can
see that an error vector at the TX port will propagate down the
lossless transmission line and will appear at the RX port with
the same magnitude. Therefore, |VR X | ≤ M · |	In + j	Qn|
and

Isolation = |VANT |
|VR X | ≥ M (Amaxηcomb − |	In + j	Qn|)

M · |	In + j	Qn|
≥ √

2 ηcomb

(
2Nb

)
− 1 (29)
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Fig. 15. Simulated worst-case isolation and the isolation bound from equation
29 versus bit resolution, where M = 6 and τd = 80ps. The isolation bound is
plotted assuming ηcomb ≈ 1. The simulation considers an ideal-lossless line
from 0.8GHz to 5.5GHz—Roughly the frequency range where it is fair to
assume ηcomb ≈ 1 for τd = 80ps.

This bound is compared with a simulation of the worst-case
isolation for an ideal, lossless transmission line in Figure 15.
If isolation ≥40dB is desired, we can see that Nb ≥ 6, and that
12-bit systems can theoretically achieve isolation over 70dB.

V. RX NOISE FIGURE

Up to this point we have primarily considered the operation
of a distributed duplexer with regards to preventing TX signal
from interfering with the receiver. Assuming RX operation
is not degraded by TX signal due to high isolation, RX NF
depends on the TX output noise that reaches the receiver,
as well as the transmission line’s insertion loss.

A. Suppression of Correlated Noise Sources

To analyze how noise from the distributed transmitter affects
the receiver, we must consider how noise from each sub-
transmitter superposes at the receiver input. Depending on
where in the TX chain noise is injected, there are two
possibilities for how noise combines in the transmission line
(Figure 16). Noise that is injected in the signal path after
the TX weights have been applied is uncorrelated across sub-
transmitters and does not benefit from cancelation in the com-
biner—it will simply RMS sum at the RX input. On the other
hand, noise sources such as shared baseband drivers or oscil-
lator phase noise that are identical across sub-transmitters will
be fully correlated and will have the TX weights applied.
Therefore, this correlated noise will cancel at the RX port the
same way TX signal does. As discussed previously, weight
selection only provides a narrowband null for TX signal, and
the same is true for correlated TX noise. Therefore correlated
noise will only be fully suppressed at fT X . The rejection to
expect for a specific TX-RX offset can be calculated the same
way as isolation bandwidth (see Section II-D).

B. Low Noise Sub-Transmitter Design

The three contributors to sub-transmitter output noise are:
1) Thermal noise from the PA and BB circuits, 2) Upconverted
BB flicker noise, and 3) TX LO phase noise. Close to the TX
LO frequency, output noise will be dominated by upconverted
BB flicker noise,and/or TX LO phase noise. In order to
optimize we start by considering thermal noise and for now

Fig. 16. Correlated and uncorrelated noise sources in a distributed
transmitter. In general, any shared element’s noise will be correlated across
sub-transmitters, and individual sub-transmitters’ noise sources will be
uncorrelated.

ignore flicker and phase noise. In general, output thermal noise
of a circuit will rise as gain increases. Because uncorrelated
noise sources are worse than correlated ones in distributed
duplexing, we should therefore concentrate gain in shared
blocks as much as possible to reduce uncorrelated thermal
output noise.

Using the sub-transmitter block diagram from Figure 16,
this means that we would ideally have all of the TX gain
in the shared baseband driver, and the gain/phase control,
mixer, and PA would all have unity or lower gain. Practi-
cally speaking, we are limited by the maximum signal the
baseband circuits are capable of handling without either suf-
fering breakdown or excessive non-linearity. If we define the
maximum baseband voltage amplitude as Vswing , we should
set the output of the shared baseband driver to have ampli-
tude Vswing , and have as near as possible to unity gain
through the gain/phase control and mixer, thus allowing the
maximum possible signal to reach the PA input. Then, given a
required Imax (Section IV), we should use the minimum
possible transconductance for the PA to minimize its thermal
noise Gm,min = Imax/Vswing .

It is worth noting that if the maximum signal swing allow-
able is different for each sub-transmitter block, this optimiza-
tion may be different. For example in [17], the upconversion
mixer could not handle the full baseband driver’s swing.
Therefore, instead of reducing the gain of the shared baseband
driver to reduce the signal amplitude, the gain/phase control
block was made to have gain < 1 to reduce its uncorrelated
thermal noise.

C. TX LO Phase Noise

TX LO phase noise will dominate the total TX output noise
when fT X is sufficiently close to fR X , and will potentially
degrade RX NF at any TX/RX frequency spacing. In this
section, we will consider wideband uncorrelated phase noise
due to sub-transmitter-specific LO circuitry, as well as more
global oscillator phase noise that is strongest near fT X .

For widely-spaced fT X and fR X , wideband, uncorrelated
phase noise may dominate the total phase noise in the
RX band. If this is the case, the noise at the RX input will
simply be the RMS sum of each sub-transmitter’s phase noise
output. To avoid significantly worsening RX noise figure (NF)
when TX noise is present, we can say uncorrelated phase
noise must satisfy PANT − 20 log (ηcomb) + PNu(	 f ) <
Pn,R X , where PNu is the uncorrelated phase noise component
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in dBc/Hz, PANT is the total output power in dBm, 	 f =
fR X − fT X is the offset frequency, and Pn,R X is the input-
referred RX noise converted to dBm/Hz. Assuming a 50
 sys-
tem, Pn,R X = 10 log (20V 2

n,R X ). Because uncorrelated phase
noise directly impacts RX NF, this suggests sub-transmitters
should share as much LO circuitry as possible.

For closely spaced fT X and fR X , or when uncorrelated
phase noise is kept low enough, oscillator phase noise will
dominate. Assuming a single oscillator drives each sub-
transmitter’s LO circuitry, all oscillator phase noise will be
correlated across sub-transmitter stages. Mixing correlated
phase noise with weighted TX signals will generate weighted
output noise, suggesting that correlated LO phase noise will be
suppressed at the RX input like other correlated noise sources
when fT X ∼ fR X . This is correct to a certain extent, but the
effects of phase noise in distributed duplexing (and indeed any
similar phased arrays) is somewhat more subtle.

To analyze the effects of correlated phase noise we will
consider how a phase perturbation at an offset frequency of
ωn causes output noise at the RF port of the upconversion
mixer. The full phase noise spectrum is derived by sweeping
ωn and superposing the results at the output. As derived
in [20, III-B], the quadrature LO including a phase pertur-
bation at ±ωn is:

SL O,I = cos (ωL O t) − �n sin [(ωL O + ωn)t + φn]
− �n sin [(ωL O − ωn)t − φn]

SL O,Q = sin (ωL Ot) + �n cos [(ωL O + ωn)t + φn]
+ �n cos [(ωL O − ωn)t − φn] (30)

where φn is the random phase for this perturbation, and �n is a
function of ωn and describes the power of the perturbation at
the offset ωn . For typical oscillator phase noise, �n decreases
at −20dBc/decade as ωn increases except at very large off-
sets where �n is approximately constant. If we assume our
quadrature input baseband voltage is given by:

VB B,I = A sin [(ωT X − ωL O)t + θ ]
VB B,Q = A cos [(ωT X − ωL O )t + θ ] (31)

then we can find the output voltage simply as:

VRF = VB B,I SL O,I + VB B,Q SL O,Q

= A sin (ωT X t + θ) +
(

cos [(ωT X + ωn)t + φn + θ ]
+ cos [(ωT X − ωn)t − φn + θ ]

)
A�n (32)

Equation 32 shows that, when ωn ≈ ±(ωT X − ωR X ), there
will be output noise due to TX LO phase noise that appears
in the RX band. However, it also shows that these noise
terms pick up both the magnitude of the TX signal (A) and
the phase of the TX signal (θ ). This means that these noise
will be suppressed around fT X at the RX input due to the
TX weights as expected for correlated TX noise. Because
correlated noise is suppressed most strongly around fT X ,
phase noise at small offsets (ωn small) will be suppressed
the most strongly, which also corresponds to where LO phase
noise is strongest. The resulting noise spectrum at the RX
input due to oscillator phase noise at small offsets therefore

Fig. 17. The left plot shows the rejection for an ideal, lossless transmission
line around fT X = 1.75GHz, as well as purely correlated TX LO phase noise
around fT X . On the right, the product of these two curves is taken to find the
noise spectrum at the RX input resulting from only correlated TX LO phase
noise. Plotted for M = 5 and τd = 200ps.

depends both on the shape of the LO phase noise and the
TX/RX rejection. One example of what this can look like
is shown in Figure 17. As with uncorrelated phase noise,
we can write a requirement for small offsets to prevent TX
LO phase noise from affecting RX NF. For correlated noise
at an offset of 	 f = ±( fT X − fR X ), the requirement is:
PANT − 20 log(ηcomb)+ PNc(	 f )− Iso(	 f ) < Pn,R X , where
PNc(	 f ) is the correlated phase noise component at offset
	 f , and Iso(	 f ) is the TX/RX isolation in dB at 	 f .

While the phase noise from smaller offsets is much stronger
than that at larger offsets, the large amount of suppression
for close-in phase noise means we must also consider any
other offsets that may no longer be negligible. Two other
values of ωn that will produce noise in the RX band are:
ωn = ±(ωT X + ωR X ). This will bring the noise terms in
equation 32 to −ωR X . Using cos(φ) = cos(−φ), this means
these noise terms will be of the form A cos (ωR X t ± φn − θ).
Therefore, when ωn = ±(ωT X + ωR X ), noise will also
appear in the RX band, however with the opposite phase
shift (−θ ) of the TX signal. Reversing the phase shift of
the TX weights means correlated signals/noise will tend to
be suppressed at the TX port, and will add in-phase at the
RX port. Therefore, while the phase noise at small offsets is
suppressed by distributed duplexing, the phase noise at large
offsets will be amplified (at least when fT X ∼ fR X ). The
requirement for this “unfavorably correlated” noise is therefore
approximately: PANT + PNc(	 f ) < Pn,R X . This equation is
valid for 	 f ≈ ±( fT X + fR X ) when fR X ∼ fT X . Thus, extra
suppression of very wideband phase noise may be needed.

To summarize, there are three categories of TX LO phase
noise to consider in distributed duplexing. First is uncorrelated
phase noise which must be kept very low at offsets of
±( fT X ± fR X ) and simply RMS sums at the RX input. Second
is correlated phase noise at offsets of ±( fT X − fR X ), which are
suppressed by the TX signal rejection at fR X . Finally, there
is correlated phase noise at offsets of ±( fT X + fR X ) which
add roughly in-phase unless a very wide TX-RX frequency
spacing is used.

D. Calculating RX NF

To calculate the noise figure of the receiver including
TX noise, we first assume a known equivalent output noise
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Fig. 18. The noise model for calculating RX NF. Each sub-transmmitter’s
equivalent output noise current superposes at the RX and are modeled as a
single noise voltage: V 2

n,T X .

current for each sub-transmitter, I 2
n,out (Figure 18). A noise

current vector
−−−→
I 2
n,out can be used to describe the output noise

from each sub-transmitter.
−−−→
I 2
n,out is composed of correlated and

uncorrelated noise, so
−−−→
I 2
n,out = −→

I 2
n,c + −→

I 2
n,u + −−→

I 2
n,uc. We define−→

I 2
n,u as the total uncorrelated output current noise,

−→
I 2
n,c is the

total correlated output noise excluding phase noise at large

offsets, and
−−→
I 2
n,uc is the “unfavorably correlated” phase noise

at large offsets. Therefore the noise injected by the TX to the
RX is:

V 2
n,T X = −−→

Z R X
◦2(ωR X ) · −−−→

I 2
n,out

≈ M Z2
0

4

(
I 2
n,u + Rej(ωR X )I 2

n,c + Mη2
comb I 2

n,uc

)
(33)

where
−→
A ◦b denotes the bth Hadamard power (i.e. termwise

exponentiation) of a vector, and Rej(ωR X ) is the rejection due
to TX weights also evaluated at ωR X . The second expression
for V 2

n,T X shows more intuitively how correlated noise is
reduced, but is only accurate when both components of the
noise power from each sub-transmitter are roughly equal (and
therefore can be written as a scalar value) and transmission
line loss is low. Equation 33 suggests that smaller M is better
for TX noise, however this doesn’t tell the full story. For a
constant maximum PANT and Vswing , Gm,min can be reduced
as M increases. This means thermal noise (which is often
a dominant noise source) and TX LO output phase noise is
roughly constant for varying M at the RX input.

This total TX noise will add to the equivalent input noise
of the RX (V 2

n,R X ). At the same time, loss in the transmission
line will attenuate the received signal before it reaches the RX,
further reducing its SNR. Using the circuit shown in Figure 18,
we find the degraded RX noise factor (F):

F = 1 + V 2
n,R X + V 2

n,T X

AT L V 2
n,s

(34)

where AT L ≤ 1 and is the total power gain of the transmission
line. Therefore, insertion loss in the transmission line always
degrades NF, and unless V 2

n,R X >> V 2
n,T X TX noise will also

significantly degrade NF.

Fig. 19. The minimum RX NF due solely to PA thermal noise plotted across
maximum output power. We assume PAs are designed for minimum output
noise as described in section V-B given γ = 1, Z0 = Z RX = Z AN T = 50
,
Vswing = 0.5V, and AT L = 1.

In general, achieving V 2
n,T X << V 2

n,R X for high output
power is not possible with this system as presented due to the
uncorrelated thermal noise of each PA. If we design the PAs
for minimum output noise as described in Section V-B, then
we can find the minimum V 2

n,T X assuming only PA thermal
noise:

V 2
n,T X ≈ kT γ Gm M Z2

0 ≥ 2kTγ Z2
0

ηcombVswing

√
2PANT

Z0
(35)

Plugging this minimum V 2
n,T X into equation 34 and setting

V 2
n,R X = 0 gives the minimum achievable RX NF in terms of

output power (Figure 19). To operate with reasonable RX NF
at higher PANT , [16] and [17] used an N-path PA degeneration
technique to reduce each PA’s transconductance in the RX
band, therefore breaking the trade-off between RX NF and
PANT shown in Figure 19. Any design which successfully
suppresses PA thermal noise in the RX band will still have to
meet the TX LO phase noise requirements, and cannot allow
other noise (such as correlated baseband noise) to dominate if
operation at high PANT with low RX NF is desired.

VI. CONCLUSION

In this paper, we have presented analysis and design con-
siderations for the class of modified distributed amplifiers
we refer to as “distributed duplexers”. These considerations
include the fundamental operation of distributed duplexers,
the consequences using of lossy, artificial transmission lines
as the combining network, optimal design of system and sub-
circuit parameters for best system performance, and how to
characterize the added noise presented to the receiver by
distributed duplexing. This paper should serve as a guide
for understanding and designing distributed duplexers, and
to that end we summarize the requirements for major sys-
tem parameters in Table I given a desired frequency range
bounded by fmin and fmax where we require ηcomb ≥ 0.9,
total transmission line power gain of AT L , a certain maxi-
mum output power PANT , a minimum acceptable amount of
TX-RX isolation (Isomin in dB), and a matched transmission
line and antenna impedance Z0 = Z ANT = Z R X .

To verify the equations in Table I, we can design a system
for fmin = 900MHz, fmax = 5GHz, and PANT = 10dBm.
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TABLE I

DESIGN EQUATIONS FOR SYSTEM/CIRCUIT PARAMETERS

Fig. 20. PAN T , NF, and AT L from a MATLAB simulation of an example
distributed duplexer. NF is plotted for V 2

n,RX = 0, Vswing = 0.5V, and γ = 1
as in Figure 19. The system was designed using the equations from Table I
if fmin = 900MHz, fmax = 5GHz, PAN T = +10dBm. Plotted assuming
Rsh = 10k
, Z0 = Z AN T = Z RX = 50
.

From Table I, we find that M=6, n=3, τd = 80ps, and
Imax = 7.41mA should work. If Vswing = 0.5V and γ = 1,
the minimum NF should be ∼7dB according to equations 34
and 35. This example system was simulated in MATLAB to
verify PANT and NF across the desired tuning bandwidth
(Figure 20). Where AT L ≈ 1, the simulated NF closely
matches the expected minimum NF, and the output power is
+10dBm as desired. PANT drops and NF rises due to increas-
ing transmission line loss as fT X increases. The transmission
line was modeled as described in Section III-C assuming
Rsh = 10k
, Lunit = 1.333nH, Z0 = 50
, and Q = 15.

APPENDIX
DERIVATION OF REJECTION ACROSS FREQUENCY

We start by using equation 3 to find the correct −−→wT X to
cancel TX signal at fT X . We choose Gm = 1 for simplicity
and VANT = 1 and VR X = 0 as usual:

−−→wT X = ZTL
∗[(ZTL)ZTL

∗]−1
[

1
0

]
(36)

To break this equation down, we start just by finding
(ZTLZTL

∗). Plugging in equation 9 for ZTL gives:

ZTLZTL
∗ =

[
a b
c a

]
, where:

a =
M−1∑
n=0

α2n
(

e− j nφ
) (

e jnφ
)

=
M−1∑
n=0

α2n

b =
M−1∑
n=0

αM−1
(

e− j nφ
) (

e j (M−1−n)φ
)

c =
M−1∑
n=0

αM−1
(

e− j (M−1−n)φ
) (

e jnφ
)

(37)

a, b and c can be simplified using the following sum identity,

M−1∑
n=0

xn = x M − 1

x − 1
(38)

so that, omitting some algebra:

a = α2M − 1

α2 − 1
and b = c = αM−1

(
sin (Mφ)

sin (φ)

)
(39)

Plugging this result back into equation 36 gives:

−−→wT X =ZTL
∗

⎡
⎢⎢⎣

α2M −1

α2−1
αM−1

(
sin (Mφ)

sin (φ)

)

αM−1
(

sin (Mφ)

sin (φ)

)
α2M −1

α2 − 1

⎤
⎥⎥⎦

−1[
1
0

]

(40)

If we plug in ZTL
∗ using equation 9 into equation 40, the nth

element of −−→wT X is:

wT X,n =
(
αM−1

)
S

[
α−n

(
α2M − 1

α2 − 1

)
e j (M−1−n)φ

− αn
(

sin (Mφ)

sin (φ)

)
e jnφ

]

S =
[(

α2M − 1

α2 − 1

)2

− α2M−2
(

sin2 (Mφ)

sin2 (φ)

) ]−1

(41)

Now that we have found −−→wT X for our desired fT X , we can
calculate rejection for a frequency offset around fT X using
equation 2 (again assuming gm = 1). If we define ZTL[ω]
as the ideal transmission line impedance evaluated at ω,
and −−→wT X (ω) is given by equation 41 also at ω, then to
find the rejection over some bandwidth 	 f around a center
frequency fT X :[

VANT

VR X

]
= ZTL[2π( fT X + 	 f )] · −−→wT X (2π fT X ) (42)

Substituting in our −−→wT X from equation 41 closed-form
expressions for VANT and VR X can be found. If we define
rejection across frequency as Rej( f ) ≡ | VRX

VANT
|, and plug in

the closed-form expressions for VANT and VR X , the result is
given in equation 10.
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